EPA/ACC Technical Workshop for the Voluntary Children's Chemical Evaluation Program

Exposure Assessment Example for Chemical C

Gary Bangs, CIH USEPA/OPPT

December 12, 2001

The Exposure Assessment

- Exposure Pathways
- Affected Populations
- Monitoring studies
- Modeling
- Data Needs
 - Were all potential pathways examined?
 - If not, future research needs

Monitoring Data

- Concentrations of Chemical C in Breast milk of Women in a Manufacturing Plant
- Worker Inhalation at a Processing Facility
- Residential Crack and Crevice Application
- Residential Air Monitoring after Crack and Crevice Application
- Department of Defense National Groundwater Study
- Ongoing Studies

Monitoring Study: Breast Milk in Chemical C Workers

 $\overline{APDR} = C \times CR / BW$

where:

```
APDR = acute potential dose rate (mg/kg/day);
C = concentration of Chemical C in
```

Breast Milk (0.03 to 0.26 mg/L);

CR = consumption rate (0.7 L/day); and

BW = body weight (7.2 kg).

Monitoring Study: Breast Milk in Chemical C Workers

• Limitations:

- Only 4 workers in study
- External exposures not controlled
- Demographic factors not addressed
- Location of house in relation to plant not known
- Workers performed different jobs

• Study Objective: Estimate potential inhalation exposures to Chemical C among children residing in homes where Pest-X is used for crack and crevice treatment

• Study Results: The study used the detection limit for Chemical C in air to calculate inhalation exposures because no measurable concentrations of Chemical C were observed in air.

- Applicability of Study
 - Study objectives
 - Relevant to Population of Concern [Children]?
- Quality of study
 - Quality & quantity of data
 - Study methodology

- Study/Data limitations:
 - Limited to 5 homes in California.
 - Air monitoring below detectable levels: had to use LOD for exposure estimates
 - QA/QC measures taken: recoveries > 90%

 $ADD = C \times IR / BW$

Where:

ADD = average daily dose

(mg/kg/day);

C = concentration of Chemical

C in air ($<0.006 \text{ Fg/m}^3$);

IR = inhalation rate

 $(8.3 \text{ m}^3/\text{day})$; and

BW = body weight (15 kg).

 $ADD = \langle 0.003 Fg/kg/day \rangle$

Monitoring Study: Groundwater

• Purpose: to examine levels of a variety of chemicals in the nation's groundwater

• Results:

- Chemical C was detected in 486 of the 563 groundwater samples analyzed
- The detection limit was 0.1 Fg/L;
- The mean concentration was 0.25 Fg/L
- The range of detected values was 0.11 to 0.56
 Fg/L.

Monitoring Study: Groundwater

$APDR = C \times IR / BW$

Modeling Exposure

- Use of ISCLT to Model Dispersion of Fugitive Emissions of Chemical C from Manufacturing Plant
- Dermal and Hand-to-mouth Exposure Among Children in Pest-X-Treated Indoor Environments
- Aggregate Exposure to Chemical C Among Children
- Ongoing Studies

Modeling Exposure

- Model Selection
 - Computerized model or other, i.e., SOP
 - Validation/Peer Review Status of Model
 - Internal or external validation
- Model Inputs
 - Measured or estimated
 - Conservative or typical values
- Availability of Model
 - Open or proprietary format

Modeling Fugitive Plant Emissions Exposure

- ISCLT Model from PC GEMS (US EPA)
- Single Site Modeled:
 - 100 lbs / year
 - 24 hr x 365 days
 - max air concentration 4.74x10⁻⁴ Fg/m³
 - max dose $1.36x10^{-7}$ mg/kg/day

Example: Modeling Indoor Crack and Crevice Treatment: **Dermal and Hand-to-Mouth Exposures**

- Description of Exposure Scenario
- Results
- Uncertainty
 - Basis of inputs
 - population surveys
 - individual studies
 - market surveys
 - Is model designed for children or adults?

Modeling Children's Hand-to-Mouth [Non-Dietary Ingestion] Exposure

 $APDR = ISR \times SA \times EF \times SEF \times ET / BW$

```
APDR = Acute potential dose rate (mg/kg/day);

ISR = indoor surface residue (0.0025 mg/cm²);

SA = skin surface area (20 cm²/event);

EF = event frequency (20 events/hr for acute;

9.5 events/hr for longer term);

SEF = saliva extraction fraction (0.5);

ET = exposure time (4 hr/day); and

BW = body weight (15 kg).
```

APDR = 0.13 mg/kg/day

Modeling Children's Dermal Exposure

Dermal APDR = $ISR \times TC \times Abs \times ET / BW$

```
indoor surface residue (0.0025 mg/cm<sup>2</sup>);
ISR
                             indoor surface residue (mg/cm<sup>2)</sup>
ISR
                             AR x FA
                             application rate (lbs/1,000 ft<sup>2</sup>);
AR
                             fraction available for dislodging 0.1);
FA
TC
                             transfer coefficient (6,000 cm<sup>2</sup>/hr;
                             any time duration);
                             absorption fraction (0.1);
Abs
                             exposure time (4 hr/day); and
ET
                             body weight (15 kg).
BW
```

Dermal APDR = 0.4 mg/kg/day

Can Exposures Co-Occur?

- Yes; Therefore aggregate assessment appropriate:
- Example: Toddlers:
 - dermal and inhalation exposure in home [using monitoring data and modeling]
 - potential non-dietary ingestion [using modeling]
 - dietary exposure [using monitoring data]:drinking water

Example: Aggregating Children's Exposure

• Objective:

- Evaluate a 3 yr old child's total exposure to
 Chemical C from multiple pathways
- This population has multiple pathways of exposure; conservative estimate
- Resources / Inputs
 - Modeling and monitoring results already presented

Example: Aggregating Children's Exposure

- Model Algorithm/Assumptions
 - Toxicity endpoints the same for all routes of exposure, so absorbed doses can be added
 - Combined inhalation, dermal and hand-tomouth exposures from indoor application
 - Dietary intake from water
- ADD = Inhalation Dose + Dermal Dose +
 Non-dietary Dose + Dietary (water) Dose

Characterization of Children's Exposure Assessment

- Description of exposure scenarios
- Information supporting frequency and use
- Transparency in calculating doses
- Methods of route-to-route extrapolation of dose (if needed)
- Degree of uncertainty (or confidence)
- Degree of completeness (other exposure sources not considered)
- Conservatism of exposure estimate
- Quality of exposure estimate for each scenario

Data Gaps

- Community exposures from air and water releases (data are currently being collected)
- Other potential dermal exposures
- Other manufacturing sources
- Sensitive subpopulations